Home Releases № 1 (71)

THE ROLE OF HUMAN-MACHINE INTERACTION IN EDUCATIONAL DESIGN

Didactic Aspects of Informatization of Education , UDC: 378 DOI: 10.24412/2072-9014-2025-171-21-35

Authors

  • Kapterev Andrey I. Doctor of Sociological Sciences, Doctor of Pedagogical Sciences, Professor

Annotation

The article briefly discusses the theoretical and technological features of human-machine interaction (HMI) interfaces and their role in educational engineering. A conceptual model of the organization of an effective HMI with AI systems is proposed. The typology of intellectual agents suitable for use in professional education in the Russian Federation is given. Research objectives: 1) to analyze the domestic and foreign experience of using HMI in the system of vocational education; 2) to show the evolution of didactic methods and tools in educational engineering through rethinking the possibilities of HMI in the context of digital transformation of education; 3) to propose a conceptual model for organizing effective HMI with AI systems; 4) to substantiate the principles of managing the organization of the HMI in universities; 5) to build a sequence of stages of the organization of the HMI; 6) to outline the range of means of organizing the HMI with neural networks; 7) briefly formulate the difficulties of organizing the HMI and propose strategies to overcome them; 8) give examples of ergonomic HMI in successful AI projects.

How to link insert

Kapterev, A. I. (2025). THE ROLE OF HUMAN-MACHINE INTERACTION IN EDUCATIONAL DESIGN Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", № 1 (71), 21. https://doi.org/10.24412/2072-9014-2025-171-21-35
References
1. 1. Leshkevich T. G. Artificial intelligence in the context of philosophical understanding / T. G. Leshkevich // Questions of philosophy. 2023. No. 5. P. 50–60. DOI: 10.21146/0042-8744-2023-5-50-60
2. 2. Dozortsev V. M. Interaction of a human operator with artificial intelligence: the problem of trust / V. M. Dozortsev, A. L. Wenger // Institute of Psychology of the Russian Academy of Sciences. Organizational psychology and labor psychology. 2022. Vol. 7. No. 2. P. 204–232. DOI: 10.38098/ipran.opwp_2022_23_2_009
3. 3. Ovchinnikova O. P. Artificial intelligence in personnel management: opportunities and threats / O. P. Ovchinnikova, D. V. Lebedeva // Management issues. 2024. No. 4 (89). P. 55–66. DOI: 10.22394/2304-3369-2024-4-55-66.
4. 4. Ignatiev A. G. Ethical and philosophical problems of designing an artificial moral agent / A. G. Ignatiev // An ethical thought. 2024. Vol. 24. No. 1. P. 87–100. DOI: 10.21146/2074-4870-2024-24-1-87-100
5. 5. Kapterev A. I. Computerization: myth or reality / A. I. Kapterev, V. M. Mishchenko // Soviet bibliography. 1988. No. 2. P. 15–20.
6. 6. Kapterev A. I. Introduction to multimedia: a textbook / A. I. Kapterev, O. V. Shlykova. Moscow: Moscow State Institute of Culture, 1997. 74 p.
7. 7. Grinshkun V. V. Artificial intelligence in educational activities and teacher training: the need for research / V. V. Grinshkun, L. A. Shunina // Modern {digital} didactics. Moscow: A-Prior, 2023. P. 49–55.
8. 8. Kapterev A. I. Personal website of a university teacher in educational engineering / A. I. Kapterev. Moscow: Book-expert, 2022. 190 p.
9. 9. Schechter R. L. Virtual Lab Implementation Model Predicts STEM Future Plans / R. L. Schechter, P. A. Chase, A. Shivaram // Insights from Contemporary Science Courses in Higher Education. EdMedia+ Innovate Learning, 2023. P. 6–10.
10. 10. Thisgaard M. Virtual learning simulations in high school: Effects on cognitive and non-cognitive outcomes and implications on the development of STEM academic and career choice / M. Thisgaard, G. Makransky // Frontiers in Psychology. 2017. No. 8. P. 805.
11. 11. Hoc J.-M. Human-machine cooperation // The Oxford Handbook of Cognitive Engineering / Eds. by J. D. Lee & A. Kirlik. Oxford University Press. 2013. https://doi.org/10.1093/oxfordhb/9780199757183.013.0026
12. 12. Yang C. A review of human–machine cooperation in the robotics domain / C. Yang, Y. Zhu, Y. Chen // IEEE Transactions on Human-Machine Systems. 2022. No. 52 (1). P. 12–25. https://doi.org/10.1109/THMS.2021.3131684
13. 13. Gervasi R. A conceptual framework to evaluate human-robot collaboration / R. Gervasi, L. Mastrogiacomo, F. Franceschini // International Journal of Advanced Manufacturing Technology. 2020. No. 08 (3). P. 841–865.
14. 14. Dehkordi M. B. Explainability in human-robot teaming / M. B. Dehkordi, R. Mandy, A. Zaraki, A. Singh, R. Setchi // Procedia Computer Science. 2021. No. 192. P. 3487–3496. https://doi.org/10.1016/j.procs.2021.09.122
15. 15. Seeber I. Machines as teammates: a research agenda on AI in team collaboration / I. Seeber, E. Bittner, R. O. Briggs, T. de Vreede, G.-J. de Vreede [et al.] // Information & Management. 2020. No. 57. Article 103174. https://doi.org/10.1016/j.im.2019.103174
16. 16. Bhavik N. P. Human-machine partnership with artificial intelligence for chest radiograph diagnosis / N. P. Bhavik, L. Rosenberg, G. Willcox, D. Baltaxe, M. Lyons [et al.] // npj Digital Medicine. 2019. No. 2. Article 111. https://doi.org/10.1038/s41746-019-0189-7
17. 17. Newman D. Human / D. Newman, O. Blanchard // Machine. The Future of our Partnership with Machines. Kogan Page Ltd, 2019. 245 p.
18. 18. Strasser A. Distributed responsibility in human–machine interactions / A. Strasse // AI Ethics. 2022. No. 2. P. 523–532. https://doi.org/10.1007/s43681-021-00109-5
19. 19. Tarver T. 21 Amazing AI Tools to Level Up Your Teaching / T. Tarver. URL: https://www.carnegielearning.com/blog/21-ai-tools-for-teachers/ (accessed: 12.11.2024).
20. 20. Cognitive Tutor Authoring Tools. URL: https://github.com/CMUCTAT/CTAT/wiki (accessed: 12.11.2024).
21. 21. Bodekaer J. M. Our Mission / Jensen M. Bodekaer, Bonde M. Tvillinggaard. URL: https://www.labster.com/about (accessed: 12.11.2024).
22. 22. McCarthy A. D. Jump-Starting Item Parameters for Adaptive Language Tests / A. D. McCarthy, K. P. Yancey, G. T. LaFlair [et al.] // Proceedings Conference on Empirical Methods in Natural Language Processing. 2021, P. 883–899. URL: https://research.duolingo. com/papers/mccarthy.emnlp21.pdf (accessed: 12.11.2024).
23. 23. Gallagher J. AI at Woebot Health — Our Core Principles / J. Gallagher, Sh. Srinivasan. URL: https://woebothealth.com/ai-core-principles / (accessed: 12.11.2024).
24. 24. About us // Anthology. URL: https://www.anthology.com/about-us (accessed: 12.11.2024).
25. 25. Virtual Teaching Assistant: Jill Watson. URL: https://gvu.gatech.edu/research/projects/virtual-teaching-assistant-jill-watson (accessed: 12.11.2024).
Download file .pdf 374.99 kb