Authors
- Arshinsky Vadim L. Candidate of Technical Science
- Provotorov Vadim A.
Annotation
The article describes the application of artificial neural networks and machine learning for predicting students’ academic performance in higher education institutions on the example of Irkutsk National Research Technical University. The current methods of learning achievement assessment are considered, their shortcomings are revealed
and solutions for automation and improvement of data analysis are proposed. The paper emphasizes the importance of implementation of these technologies to improve the efficiency of the educational process, allows making accurate forecasts and timely identifying students in need of support.
How to link insert
Arshinsky, V. L. & Provotorov, V. A. (2024). APPLYING ARTIFICIAL NEURON NETWORKS AND MACHINE LEARNING FOR PREDICTING ACADEMIC PERFORMANCE OF HIGHER EDUCATION STUDENTS Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", № 4 (70), 61. https://doi.org/10.24412/2072-9014-2024-470-61-72
References
1.
1. Drobakhina A. N. Information technologies in education: artificial intelligence [Electronic resource] / A. N. Drobakhina // Problems of modern pedagogical education. 2021. № 70-1. URL: https://cyberleninka.ru/article/n/informatsionnye-tehnologii-v-obrazovaniiiskusstvennyy-intellekt (accessed: 01.07.2024).
2.
2. Daub I. S. Review of time series forecasting methods using artificial neural networks [Electronic resource] / I. S. Daub // StudNet. 2020. № 10. URL: https://cyberleninka.ru/article/n/obzor-metodov-prognozirovaniya-vremennyh-ryadov-s-pomoschyu-iskusstvennyhneyronnyh-setey (accessed: 01.07.2024).
3.
3. Application of neural networks in education / A. S. Belikov [et al.] // Information Systems and Technologies: materials of the 54th scientific conference of graduate students, undergraduates and students. Minsk: Belarusian State University of Informatics and Radioelectronics, 2018. P. 23–24.
4.
4. Zhdan A. B. Academic failure in higher education: a problem and solutions / A. B. Zhdan // Education and Cultural Capital: collection of scientific articles of the All-Russian Scientific and Practical Conference (Ussuriysk, December 17, 2015). Vladivostok: Far Eastern Federal University, 2015. P. 16–20.
5.
5. Redvanov A. S. The system of monitoring the academic performance of students of a pedagogical university in the context of online education [Electronic resource] / A. S. Redvanov // MNKO. 2023. № 5 (102). URL: https://cyberleninka.ru/article/n/sistema-monitoringa-uspevaemosti-studentov-pedagogicheckogo-vuza-v-kontekste-onlaynobrazovaniya (accessed: 01.07.2024).
6.
6. Svirina E. A. Review of methods for analyzing the academic performance of university students / E. A. Svirina, A. N. Petrova // Youth and Science: Actual Problems of Fundamental and Applied Research: materials of the III All-Russian National Scientific Conference of Students, Postgraduates and Young Scientists: in 3 p. (Komsomolsk-on-Amur, April 06–10, 2020). P. 2. Komsomolsk-on-Amur: Komsomolsk-on-Amur State University, 2020. P. 379–382.
7.
7. Popova N. A. Intellectual analysis of educational data for predicting the academic performance of university students [Electronic resource] / N. A. Popova, E. S. Egorova // Izvestiya KBNTS RAS. 2023. № 2 (112). URL: https://cyberleninka.ru/article/n/intellektualnyy-analizobrazovatelnyh-dannyh-dlya-prognoza-uspevaemosti-studentov-vuza (accessed: 01.07.2024).
8.
8. Andronov Yu. V. Assessment of the predictive abilities of a multilayer perceptron with various activation functions and learning algorithms / Yu. V. Andronov, V. N. Melnikov, A.V. Strekalov // Geology, Geophysics and Development of Oil and Gas Fields. 2015. № 9. P. 18–20.