Authors
- Gushchina Oksana M. Сandidate of Pedagogical Sciences
- Anikina Oksana V. Сandidate of Technical Sciences
Annotation
The article presents a study based on the use of big data and data mining using the programming language R. The purpose of the study is to analyze unrealized opportunities aimed at building students’ competence. A data analysis scenario has been developed that includes the following steps: reading data from a database, calculating statistical indicators, creating correlation matrices and conducting cluster data analysis. The results of the study are presented in the form of graphs and diagrams of the scope, which allows you to visually assess the unrealized opportunities of students in the formation of competence.
How to link insert
Gushchina, O. M. & Anikina, O. V. (2024). APPLICATION OF R PROGRAMMING LANGUAGE FOR ANALYZING UNREALIZED POTENTIAL IN STUDENT COMPETENCE FORMATION Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", № 3 (69), 23. https://doi.org/10.25688/2072-9014.2024.69.3.2
References
1.
1. Semenkina I. A. Directions of Research in the Field of Educational Data Analysis in Higher Education: theoretical overview / I. A. Semenkina, P. V. Prusakova // Pedagogika. Voprosy teorii i praktiki. 2023. Vol. 8, № 7. P. 761–770. DOI: 10.30853/ped20230111
2. Minin A. S. Application of Сorrelation and Regression Analysis Methods to Identify Factors Influencing the Average Score of Students’ Results in the Unified State Exam for University Admission Based on the “Monitoring of the Effectiveness of Higher Education Institutions” Data / A. S. Minin // Tendentsii Razvitiya Nauki i Obrazovaniya. 2023. № 100-5. P. 78–80. DOI: 10.18411/trnio-08-2023-238
3. Bobrova V. V. Modeling Academic Performance of Students Based on Intelligent Analysis of Educational Data / V. V. Bobrova, O. I. Bantikova, V. A. Novikova // Ekonomicheskiy analiz: teoriya i praktika. 2023. Vol. 22, № 2 (533). P. 235–253.
4. Evsyukov D. Yu. Transformation of Educational Systems Using the Analysis of Big Educational Data and Visual Analytics / D. Yu. Evsyukov, V. A. Lomazov, Z. S. Polyakova // Digital and Engineering Technologies in Agriculture: materials of the National Scientific and Practical Conference. Maysky: Belgorod State Agrarian University named after V. Ya. Gorin, 2022. P. 215–218.
5. Thilagaraj T. Implementation of Fuzzy Clustering Algorithms to Analyze Students Performance Using R-Tool / T. Thilagaraj, N. Sengottaiyan // Intelligent Computing and Innovation on Data Science. 2021. Vol. 118. P. 287–294. DOI: 10.1007/978-981-15-3284-9_31
6. Hadavand A. Analysis of Student Behavior Using the R Package crsra / A. Hadavand, J. Muschelli, J. T. Leek // Journal of Learning Analytics. 2019. № 6 (2). P. 140–152. DOI: 10.18608/JLA.2019.62.10
7. Kawchale N. Prediction of Student performance in Higher Education System using R Programming / N. Kawchale // International Journal of Scientific Research in Science and Technology. 2017. № 3 (4). P. 81–87.
8. Lawson B. Discrete-event Simulation Using R / B. Lawson, L. M. Leemis // WSC ‘15: Winter Simulation Conference. 2015. P. 3502–3513. DOI: 10.5555/2888619.2889091
9. Remidez H. An Experiential Approach to Building Capability in Business and IS Students / H. Remidez, D. Fodness // Journal of the Academy of Business Education. 2015. Spring. P. 175–191.
10. Van der Velden M. Sustainability Competence in Computer Science Education / M. van der Velden, B. K. Gjelsten, S. M. Jensen // Nordic Journal of STEM Education. 2021. № 5 (1). DOI: 10.5324/NJSTEME.V5I1.3953
11. Esina L. S. Some Methods of Improving the Communicative and Speech Competence of Students Studying Applied Computer Science in a Non-linguistic University / L. S. Esina // Vestnik Finasovogo Universiteta. Gumanitarnye Nauki. 2022. № 12. P. 56–59. DOI: 10.26794/2226-7867-2022-12-c-56-59
12. Kornilov V. S. Development of ICT Competence Among Students When Teaching Inverse Problems for Differential Equations with the Use of Computer Technology / V. S. Kornilov // RUDN Journal of Informatization in Education. 2019. Vol. 16, № 4. P. 328–337. DOI: 10.22363/2312-8631-2019-16-4-328-337
13. Gonzalez-Guerra L. H. Potentializing the Problem-solving Competence in Programming Courses through a Practice-based Learning + Tutoring Strategy / L. H. Gonzalez-Guerra, A. J. Leal-Flores // 2020 IEEE: Global Engineering Education Conference (EDUCON). 2020. P. 691–697 DOI: 10.1109/EDUCON45650.2020.9125154
14. Luke J. Y. Perspectives of Computer Science Students on Online Learning Quality and Learning Apps for Sustaining Communicative Competence Growth / J. Y. Luke, S. T. Sela, U. Yunus // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 729. DOI: 10.1088/1755-1315/729/1/012129