

Научная статья

УДК 377

DOI: 10.24412/2072-9014-2025-373-29-40

ПОДГОТОВКА СПЕЦИАЛИСТОВ К РЕАЛИЗАЦИИ ПРОПЕДЕВТИЧЕСКОГО КУРСА ИНФОРМАТИКИ В СИСТЕМЕ ВЫСШЕГО И ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Сергей Георгиевич Григорьев^{1, а}, Дмитрий Игоревич Павлов^{2, b} ⊠

- 1.2 Московский городской педагогический университет, Москва, Россия
- a grigorsg@yandex.ru, https://orcid.org/0000-0002-0034-9224
- b di.pavlov@mpgu.su

Анномация. Статья посвящена проблеме подготовки педагогических кадров к реализации пропедевтического курса информатики в начальной школе. Анализируя исторический путь развития курса и современные требования ФГОС НОО, авторы выявляют ключевые дефициты в подготовке учителей начальных классов и преподавателей информатики и предлагают дифференцированную модель программ повышения квалификации и профессиональной подготовки.

Ключевые слова: информатика; подготовка учителей; профессиональная подготовка; повышение квалификации.

Для цитирования: Григорьев С. Г. Подготовка специалистов к реализации пропедевтического курса информатики в системе высшего и дополнительного профессионального образования / С. Г. Григорьев, Д. И. Павлов // Вестник МГПУ. Серия «Информатика и информатизация образования». 2025. № 3 (73). С. 29–40. https://doi.org/10.24412/2072-9014-2025-373-29-40

Original article

UDC 377

DOI: 10.24412/2072-9014-2025-373-29-40

TRAINING SPECIALISTS FOR IMPLEMENTING A PROPAEDEUTIC COMPUTER SCIENCE COURSE IN HIGHER AND ADDITIONAL PROFESSIONAL EDUCATION

Sergey G. Grigoriev^{1, a}, Dmitry I. Pavlov^{2, b} ⊠

- Moscow City University, Moscow, Russia
- ^a grigorsg@yandex.ru, https://orcid.org/0000-0002-0034-9224
- b di.pavlov@mpgu.su

Abstract. The article addresses the challenge of preparing educators to teach a propaedeutic computer science course in primary schools. By analyzing the historical development of the course and modern Federal State Educational Standards for primary education, the authors identify key gaps in the training of primary school teachers and computer science instructors. They propose a differentiated model for professional development and training programs.

Keywords: computer science; teacher training; professional education; professional development.

For citation: Grigoriev S. G. Training specialists for implementing a propaedeutic computer science course in higher and additional professional education / S. G. Grigoriev, D. I. Pavlov // MCU Journal of Informatics and Informatization of Education. 2025. № 3 (73). P. 29–40. https://doi.org/10.24412/2072-9014-2025-373-29-40

Введение

редпосылки к появлению в школе учебной дисциплины «Информатика» сформировались еще в 70-х годах XX века. В рамках факультативных курсов, а также в развивавшейся в то время системе производственного обучения школьников появлялись учебные программы по кибернетике, информатике, дискретной математике и основам программирования. Параллельно с внедрением курса информатики для старшеклассников велись активные исследования возможности преподавания элементов информатики младшим школьникам.

Значительный вклад в это направление внес советский ученый Г. А. Звенигородский [1], разработавший методику обучения программированию школьников на основе языка Робик. Его работы демонстрировали, что даже младшие школьники способны осваивать основы алгоритмического мышления в игровой форме. В тот же период за рубежом Сеймур Пайперт предложил

концепцию обучения через конструирование, создав язык Лого и среду программирования, ориентированную на развитие логического и творческого мышления у детей. Эти исследования заложили теоретико-методические основы для дальнейшего развития пропедевтического курса информатики, направленного на формирование базовых представлений об информации, алгоритмах и вычислительном мышлении у учащихся начальной школы.

Вопрос о значимости раннего обучения информатике на сегодняшний день можно считать решенным в научно-педагогическом сообществе. Как отмечает С. А. Бешенков, с введением ФГОС информатика совершила качественный переход от навыковой дисциплины к метапредметной, завершив эволюцию от компьютерной грамотности к общеобразовательному предмету, а затем к метапредметному статусу [2, с. 61]. Особенно показательно, что, наряду с традиционным направлением обучению основам программирования, которое сегодня развивается в основном вокруг технологического компонента [3], в рамках ФГОС НОО выделен отдельный блок универсальных учебных действий — «Работа с информацией», содержание которого, по сути, требует систематического изучения основ информатики уже в начальной школе [4, с. 76].

Сегодня пропедевтический курс информатики перестал быть экспериментальным направлением и стал образовательной реальностью. Все больше педагогов и образовательных организаций включают элементы информатики в программу начальных классов, осознавая необходимость формирования информационной грамотности с первых лет обучения. Это обусловлено не только требованиями государственных стандартов, но и объективными потребностями цифрового общества, в котором навыки работы с информацией становятся базовыми для успешной социализации и дальнейшего обучения [5]. Таким образом, современная начальная школа закономерно движется в сторону обязательного введения систематического курса информатики, что подтверждается как теоретическими исследованиями, так и практикой массового образования [6; 7].

Методы исследования

Современные исследования выявили целый ряд особенностей и проблемных областей начального курса информатики [8], в том числе существенную проблему в реализации пропедевтического курса информатики, связанную с недостаточным уровнем профессиональной подготовки педагогических кадров [9; 10]. Анализ сложившейся ситуации позволяет выделить два ключевых аспекта данной проблемы.

Во-первых, учителя начальных классов часто испытывают значительные затруднения при преподавании элементов информатики или сознательно избегают этой тематики в своей практике. Как показывают эмпирические

данные, 90 % опрошенных педагогов начальной школы не получали специализированной подготовки в области методики преподавания информатики в системе профессионального образования. Этот факт подтверждается анализом учебных планов педагогических колледжей и вузов, где дисциплины, посвященные преподаванию информатики в начальной школе, либо отсутствуют, либо представлены в крайне ограниченном объеме.

Во-вторых, учителя-предметники (преподаватели информатики), обладая достаточной предметной компетентностью, зачастую не владеют необходимыми психолого-педагогическими знаниями для эффективной работы с младшими школьниками. Они недостаточно знакомы с возрастными особенностями познавательных процессов, эмоционально-волевой сферы и социального развития детей 7—10 лет, что существенно затрудняет выстраивание продуктивного образовательного взаимодействия.

Таким образом, решение задач начального общего образования в части формирования информационной грамотности требует качественного пересмотра системы подготовки педагогических кадров. При этом необходима дифференциация подходов: для учителей начальных классов — усиление предметно-методической составляющей, а для учителей информатики — углубление психолого-педагогической подготовки с акцентом на специфику младшего школьного возраста. Только такой комплексный подход позволит обеспечить эффективную реализацию пропедевтического курса информатики в соответствии с требованиями ФГОС и вызовами цифровой эпохи.

Говоря о подготовке учителей, мы имеем в виду как систематическую подготовку специалистов в области программ высшего образования, так и программы повышения квалификации для действующих учителей:

- курсы повышения квалификации для учителей;
- программы курсов/дисциплин по выбору для студентов, обучающихся в педагогических университетах и колледжах.

Результаты исследования

Важно определиться с рекомендациями к этим программам. Примерный перечень рекомендаций к программам повышения квалификации представлен в таблице 1.

Предложенное тематическое наполнение и пропорциональное деление нагрузки отражают потребности соответствующих категорий обучающихся. Почасовое наполнение каждой темы дано пропорционально, на случай увеличения/уменьшения общего объема программы.

В таблице 2 представлены рекомендации для разработки программ учебных дисциплин/курсов по выбору для студентов педагогических вузов и колледжей.

Таблица 1 Рекомендации к тематическому планированию программ повышения квалификации действующих учителей

	Учитель начальных классов	Учитель информатики
Рекомендуемый объем	Минимум 144 часа	Минимум 144 часа
Психолого-педагогический блок	1 / 16	2 / 8
Блок общей методики информатики	3 / 16	1 / 16
Теоретические аспекты раннего обучения информатике	1 / 8	1 / 8
Авторские подходы к реализации курса информатики	1 / 8	1 / 8
Практикум по решению заданий	1 / 4	3 / 16
Практикум по подготовке уроков/занятий	1 / 4	1 / 4
Соотношение контактной и самостоятельной работы	1:1	1:1

Таблица 2 Рекомендации к тематическому планированию программ учебных дисциплин и дисциплин по выбору педагогических вузов и колледжей

	Учитель	Учитель
	начальных	информатики
	классов	
Рекомендуемый объем	6 з.е.	4 з.е.
Психолого-педагогический блок	0	1 / 16
Блок общей методики информатики	1 / 8	0*
Теоретические аспекты раннего обучения	1 / 8	1 / 8
информатике		
Авторские подходы к реализации курса	1 / 8	1 / 8
информатики		
Практикум по решению заданий	2 / 8	1 / 4
Практикум по подготовке уроков/занятий	6 / 16	7 / 16
Соотношение контактной и самостоятельной	2:1	2:1
работы		

Разберем содержание блоков.

Психолого-педагогический блок в программах повышения квалификации

Для учителей начальных классов

В программах подготовки учителей начальной школы психолого-педагогический блок должен быть ориентирован на актуализацию ключевых особенностей познавательного развития младших школьников. Основное внимание уделяется механизмам восприятия, переработки и усвоения информации

детьми 7–10 лет, с учетом возрастной специфики мышления, памяти и внимания. В рамках модуля рассматриваются:

- *особенности когнитивных процессов:* преобладание наглядно-образного мышления, ограниченный объем произвольного внимания, зависимость запоминания от эмоциональной вовлеченности);
- мотивационные аспекты обучения: роль игровых методов, поощрения познавательной активности, формирования устойчивого интереса к учебной деятельности;
- методы адаптации учебного материала: дозирование информации, использование мультисенсорных подходов, включение интерактивных и практикоориентированных форм работы.

Данный модуль не предполагает углубленного изучения психологии, а направлен на систематизацию уже имеющихся у педагогов знаний с акцентом на их применении в преподавании основ информатики.

Для учителей информатики

Учителя информатики, как правило, не имеют достаточной подготовки в области возрастной психологии и педагогики начальной школы, поэтому для них разрабатывается расширенный психолого-педагогический модуль. Его содержание включает:

- возрастную периодизацию и ключевые новообразования младшего школьного возраста: переход от игровой деятельности к учебной, формирование внутреннего плана действий, развитие рефлексии;
- дидактические и психологические особенности работы с младшими школьниками: эмоциональная регуляция, способы поддержания дисциплины, учет зоны ближайшего развития при проектировании заданий;
- типичные трудности в обучении: гиперактивность, медленная обработка информации, страх ошибки и стратегии их преодоления.

Блок общей методики преподавания информатики

Для учителей начальных классов

Учителя начальной школы нуждаются в формировании целостного представления о структуре и содержании школьного курса информатики, поскольку их задача — заложить основы для последующего изучения предмета в основной и старшей школе. В рамках данного модуля рассматриваются:

- фундаментальные понятия информатики: информация, алгоритм, модель, управление;
- математические основы информатики: элементы логики, множества, отношения, простейшие алгоритмические конструкции, необходимые для понимания базовых принципов предмета;

- *общеобразовательные задачи курса:* развитие логического и алгоритмического мышления, формирование навыков работы с информацией, подготовка к изучению программирования;
- преемственность между начальным и основным общим образованием: связь пропедевтического курса с последующими темами, избегание дублирования и пробелов.

Для учителей информатики

Учителя-предметники, как правило, хорошо знакомы с содержанием курса информатики в среднем и старшем звене, но могут упускать из виду специфику его преподавания в начальной школе. Для них модуль общей методики направлен на следующие аспекты:

- систематизация знаний о непрерывном курсе информатики: преемственность содержания, сквозные линии, распределение тем по годам обучения:
- связь пропедевтики с дальнейшим изучением предмета: как заложенные в начальной школе идеи развиваются в основной программе.

Блок «Теоретические аспекты раннего обучения информатике»

Данный модуль является универсальным для всех категорий педагогов, поскольку формирует единое понимание методологических и дидактических основ пропедевтического курса информатики. Его содержание охватывает ключевые аспекты генезиса, современного состояния и перспектив развития раннего обучения информатике.

1. Историческая эволюция курса.

Рассматриваются этапы становления пропедевтической информатики. Анализируется смена парадигм: от компьютерной грамотности к вычислительному мышлению и цифровой компетентности.

2. Современное состояние пропедевтики.

Характеризуются нормативные основания, содержательные модели, дидактические приоритеты.

3. Психолого-педагогические основания.

Раскрываются когнитивные предпосылки, мотивационные механизмы и ограничения.

4. Методический инструментарий.

Систематизируются подходы, методы и средства обучения. Изучается таксономия учебных заданий.

5. Дидактические принципы.

Обосновывается необходимость использования отдельных педагогических подходов и принципов обучения.

Блок «Авторские подходы к реализации курса информатики»

Данный модуль также является универсальным для всех категорий педагогов, поскольку формирует единое понимание подходов к реализации пропедевтического курса информатики.

В этом разделе будет рассмотрено историческое развитие пропедевтического курса информатики от узкотехнического подхода к формированию системного мышления: период до государственных образовательных стандартов, периоды ГОС (2000-е гг.) и ФГОС НОО. Изучаются подходы А. В. Горячева, Н. В. Матвеевой, А. Л. Семенова, М. А. Плаксина, Н. К. Нателаури, Д. И. Павлова.

Блок «Практикум по решению заданий»

Модуль направлен на формирование практических навыков конструирования и анализа учебных заданий в соответствии с ключевыми содержательными линиями пропедевтического курса. Особое внимание уделяется типологии задач и методике преодоления типичных затруднений учащихся.

1. Типология учебных заданий.

- информационная грамотность: задания на поиск, анализ и представление данных (работа с таблицами, схемами, диаграммами);
- алгоритмическое мышление: построение линейных и ветвящихся алгоритмов в игровой форме;
- *основы программирования*: создание анимаций и простых игр в визуальных средах (Scratch Jr, ПиктоМир);
- математические основы: логические задачи, множества, комбинаторика в доступной форме.

2. Формы реализации.

- традиционные (работа с тетрадями, карточками, наглядными материалами);
- цифровые (компьютерные практикумы, интерактивные тренажеры);
- проектные (создание мультимедийных продуктов).

3. Методический анализ.

- разбор типичных ошибок учащихся (непонимание условия, трудности формализации);
 - приемы дифференциации заданий по уровню сложности;
 - критерии оценивания результатов.

Практическая часть включает:

- 1) выполнение заданий в позиции ученика с последующей рефлексией;
- 2) модификацию задач под разные учебные ситуации.

Особый акцент делается на преемственности между:

- вербальными и визуальными формами представления информации;
- предметными и метапредметными результатами;
- классной и внеурочной деятельностью.

Блок «Практикум по подготовке уроков/занятий»

Данный модуль направлен на формирование у педагогов компетенций в области проектирования и методического обеспечения учебных занятий по пропедевтическому курсу информатики. Основное внимание уделяется разработке дидактических материалов, сочетающих традиционные («тетрадные») и цифровые формы работы, а также организации проектной деятельности младших школьников.

Ключевым аспектом модуля является освоение технологии конструирования учебных заданий, соответствующих основным содержательным линиям курса: формированию информационной грамотности, развитию алгоритмического мышления, основам программирования и математическим основаниям информатики. В рамках практикума участники разрабатывают систему взаимосвязанных заданий, обеспечивающих постепенное усложнение учебного материала с учетом возрастных познавательных возможностей учащихся. Особое значение придается созданию заданий, позволяющих осуществлять плавный переход от манипуляций с физическими объектами к работе с абстрактными понятиями.

Важной составляющей модуля является освоение методики разработки компьютерного практикума, адаптированного для младшего школьного возраста. Педагоги изучают принципы отбора цифровых образовательных ресурсов, особенности их интеграции в учебный процесс, а также технику безопасности при организации работы с компьютерной техникой. Особое внимание уделяется анализу типовых ошибок при выполнении заданий и разработке системы педагогической поддержки, направленной на их преодоление.

Отдельный раздел практикума посвящен проектированию системы дидактического обеспечения проектной деятельности. Участники осваивают методику разработки учебных проектов, соответствующих познавательным возможностям младших школьников, а также систему критериев оценки результатов проектной работы. Особый акцент делается на создании условий для формирования у учащихся базовых навыков сотрудничества и представления результатов в рамках выполнения групповых проектов.

Результатом освоения модуля становится сформированная у педагогов способность к целостному проектированию учебных занятий, включающему: постановку конкретных учебных целей, отбор содержания, выбор оптимальных форм и методов обучения, разработку системы оценивания, а также прогнозирование возможных трудностей учащихся и способов их преодоления. Все разработанные в ходе практикума материалы проходят экспертизу и обсуждение в группе, что способствует выработке единых методических подходов к реализации пропедевтического курса информатики.

Заключение

Разработанные методические рекомендации по подготовке педагогических кадров к реализации пропедевтического курса информатики основываются на системном анализе практических затруднений учителей, выявленных в ходе анкетирования и профессиональных обсуждений. Полученные эмпирические данные позволили сформировать дифференцированное содержание образовательных программ, учитывающее как предметные дефициты учителей начальных классов, так и психолого-педагогические пробелы преподавателей информатики. В настоящее время апробация данных программ успешно осуществляется на базе МПГУ и АНО «Педагогический совет», что создает условия для их дальнейшего совершенствования.

Современные технологии профессионального обучения, применяемые в разработанных программах, интегрируют актуальные тенденции цифровой педагогики, включая blended-learning подходы и систему дистанционной поддержки слушателей. Особое внимание уделяется созданию электронной образовательной среды, обеспечивающей доступ к методическим материалам, видеолекциям и интерактивным тренажерам, что позволяет организовать непрерывное сопровождение профессионального роста педагогов. Реализация программ предусматривает использование облачных технологий для совместной проектной работы, вебинаров для экспертных дискуссий, а также системы автоматизированного тестирования для оперативного контроля формируемых компетенций, что в совокупности обеспечивает гибкость и персонализацию образовательного процесса [5].

Результаты реализации программ регулярно подвергаются научному анализу и обсуждаются в профессиональном сообществе через публикации в рецензируемых научных журналах и выступления на профильных конференциях. Такой подход позволяет не только обобщать накопленный опыт, но и выявлять новые направления для методического совершенствования подготовки педагогов. Полученные данные становятся основой для цикличного процесса актуализации содержания программ, обеспечивающего их соответствие динамично развивающимся требованиям к цифровой подготовке младших школьников.

Список источников

- 1. 3венигородский Γ . A. Первые уроки программирования / Γ . A. Звенигородский. М.: Наука, 1985. 207 с.
- 2. *Бешенков С. А.* Курс информатики в современной школе: от компьютерной грамотности к метапредметным результатам / С. А. Бешенков, Е. А. Ракитина, Э. В. Миндзаева // Муниципальное образование: инновации и эксперимент. 2010. № 1. С. 58–63.
- 3. *Ломаева М. В*. Обучение дошкольников основам программирования с помощью электронных образовательных средств / М. В. Ломаева // Проблемы современного педагогического образования. 2022. № 74-1. С. 146-149.

- 4. *Павлов Д. И*. Обновленная редакция ФГОС НОО и ее влияние на развитие курса информатики в начальной школе / Д. И. Павлов, А. В. Каплан // Наука и школа. 2022. № 2. С. 65–78.
- 5. *Гриншкун В. В.* Современная {цифровая} дидактика / В. В. Гриншкун, С. Г. Григорьев, А. Л. Семенов [и др.]. М.: А-Приор, 2023. 140 с.
- 6. Семенов А. Л. Полвека цифрового обновления отечественной школы в зеркале биографии исследователя. К 80-летию А. Ю. Уварова / А. Л. Семенов, А. Е. Абылкасымова, В. А. Варданян [и др.] // Информатика и образование. 2023. Т. 38. № 1. С. 5–22.
- 7. Professional Development for K-12 Computer Science Teachers // Computer Science Teachers Association: website. URL: https://csteachers.org/ (дата обращения: 15.05.2025).
- 8. Курин А. Ю. Особенности преподавания информатики в начальной школе: анализ подходов / А. Ю. Курин // Преподаватель высшей школы: традиции, проблемы, перспективы: материалы XI Всерос. науч.-практ. онлайн-конф. (с междунар. участием). Тамбов: Державинский. 2020. С. 318–322.
- 9. *Павлов Д. И.* О подходах к подготовке специалистов для реализации начального курса информатики / Д. И. Павлов // Педагогическая информатика. 2023. № 3. С. 171–177.
- 10. *Liu R*. Building Elementary Teachers' Capacity for Computer Science Instruction Through Professional Development: A Randomized Control Trial / R. Liu. J. Maeng, Sh. Moots [et al.] // Contemporary Issues in Technology and Teacher Education. 2024. Vol. 25 (1). P. 87–126.

References

- 1. Zvenigorodskiy G. A. The first programming lessons / G. A. Zvenigorodskiy. Moscow: Nauka, 1985. 207 p.
- 2. Beshenkov S. A. The course of computer science in a modern school: from computer literacy to metasubject results / S. A. Beshenkov, E. A. Rakitina, E. V. Mindzayeva // Municipal education: innovations and experiment. 2010. No. 1. P. 58–63.
- 3. Lomaeva M. V. Teaching preschoolers the basics of programming using electronic educational tools / M. V. Lomaeva // Problems of modern pedagogical education. 2022. No. 74-1. P. 146–149.
- 4. *Pavlov D. I.* Updated edition of the Federal State Educational Standard for Higher Education and its impact on the development of computer science courses in elementary schools / D. I. Pavlov, A. V. Kaplan // Science and School. 2022. No. 2. P. 65–78.
- 5. Grinshkun V. V. Modern {digital} didactics / V. V. Grinshkun, S. G. Grigoriev, A. L. Semenov [et al.]. Moscow: A-Prior, 2023. 140 p.
- 6. Semenov A. L. Half a century of digital renewal of the national school in the mirror of the researcher's biography. On the 80th anniversary of A. Yu. Uvarov / A. L. Semenov, A. E. Abylkasymova, V. A. Vardanyan [et al.] // Informatics and Education. 2023. Vol. 38. No. 1. P. 5–22.
- 7. Professional Development for K-12 Computer Science Teachers // Computer Science Teachers Association: website. URL: https://csteachers.org/ (accessed: 15.05.2025).
- 8. Kurin A. Yu. Features of teaching computer science in elementary schools: an analysis of approaches / A. Yu. Kurin // Higher school teacher: traditions, problems,

prospects: materials of the XI All-Russian Scientific and Practical Internet conference. Tambov: Derzhavinsky. 2020. P. 318–322.

- 9. *Pavlov D. I.* On approaches to training specialists for the implementation of the initial computer science course / D. I. Pavlov // Pedagogical Informatics. 2023. No. 3. P. 171–177.
- 10. Liu R. Building Elementary Teachers' Capacity for Computer Science Instruction Through Professional Development: A Randomized Control Trial / R. Liu. J. Maeng, Sh. Moots [et al.] // Contemporary Issues in Technology and Teacher Education. 2024. Vol. 25 (1). P. 87–126.

Статья поступила в редакцию: 02.06.2025; одобрена после рецензирования: 04.08.2025; принята к публикации: 11.08.2025.

The article was submitted: 02.06.2025; approved after reviewing: 04.08.2025; accepted for publication: 11.08.2025.

Информация об авторах / Information about the authors:

Сергей Георгиевич Григорьев — доктор технических наук, профессор, членкорреспондент РАО, профессор департамента информатики, управления и технологий, Институт цифрового образования, Московский городской педагогический университет, Москва, Россия.

Sergey G. Grigoriev — Doctor of Technical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Professor of the Department of Informatics, Management and Technology, Institute of Digital Education, Moscow City University, Moscow, Russia.

grigorsg@mgpu.ru, https://orcid.org/0000-0002-0034-9224

Дмитрий Игоревич Павлов — кандидат педагогических наук, доцент кафедры теории и методики обучения математике и информатике, Институт математики и информатики, Московский педагогический государственный университет, Москва, Россия.

Dmitry I. Pavlov — Candidate of Pedagogical Sciences, Associate Professor of the Department of Theory and Methods of Teaching Mathematics and Computer Science, Institute of Mathematics and Computer Science, Moscow Pedagogical State University, Moscow, Russia.

di.pavlov@mpgu.su

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interest.